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Modeling Rectangular Waveguide Junctions
by the Eigenfunction Method

ALI H. NALBANDOGLU, STUDENT MEMBER, IEEE

Abstract—A method to determine the impedance and admittance
matrices of a certain class of rectangular waveguide junctions is
presented. First, general matrices are obtained relating all of the
modes that may exist in the waveguides connected to the ports, The
expressions for the matrix entries are given in terms of the eigenfunc-
tions of the volume occupied by the junction and the fields at the ports.
Second, to obtain a relationship between the propagating modes of
the connecting waveguides, a numerical iterative procedure is
developed to climinate the evanescent modes from the general
matrices. Practical applications have shown that the results agree
well with the previous ones, and the method can readily be used to
analyze different types of junctions in any required frequency range.

NOMENCLATURE

Subscript for layers.
Relative permittivity of the ith layer.
d; Thickness of the ith layer.

K(z) Relative permittivity function of the junction.

M(z) Relative permeability function of the junction.

7] Outward normal unit vector.

P plane The plane perpendicular to the z axis.

p Subscript for the quantities pertinent to the P
plane.

Uiy Coordinate variables in the P plane,

So Lateral surface occupied by the ports.

S Lateral surface occupied by the kth port.

S, Lateral surface not occupied by the ports.

L Intersection of the P plane and the lateral
surface.

L, Intersection of the P plane and §,..

L Intersection of the P plane and S,.

L, Intersection of the P plane and S..

Jm(2)gm(z) Depth eigenfunctions (PM,PE).

D s Normalization constants for £,,(z) and g,,(z).

Vst Propagation constants in the P plane.

O/ Planar eigenfunctions (PM,PE).

Al Planar eigenvalues (PM,PE).

H,.E, Total (magnetic, electric) fields in the connect-

ing waveguides.

1. INTRODUCTION

WAVEGUIDE junction can be defined as a closed
box filled with a heterogeneous combination of pas-
sive material media, connected to the rest of the circuit by
closed waveguides through a finite number of clearly
definable ports [1]. Early methods developed for their
analysis have generally utilized the analytic approach and
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Fig. 1. General form of the rectangular waveguide junctions.

have been aimed to obtain a formula from which numerical
values for a particular set of dimensions may be obtained by
hand calculations. A good review of such methods and their
applications is given by Marcuvitz [2]. The resulting for-
mulas are all approximate, except for a small group of
junctions [3, ch. 10]. However, they served for a long time as
an almost unique tool to calculate network parameters,
although they need an advanced level of mathematics and
apply only to single-mode-propagation cases.

The use of the numerical approach is almost as old as the
analytic approach [4], but it became attractive only after the
advent of digital computers. Taking the review of Silvester
and Csendes [1] and the recent developments into account,
one can conclude that numerical methods are more success-
ful in analyzing the single or interacting planar discontinu-
ities. However, special care is required to avoid problems
such as relative convergence and inversion of ill-conditioned
matrices. Recently there have been studies to eliminate these
computational problems [5], however the mathematics
employed is quite complicated.

In this paper, a new method is described to model a
certain class of rectangular waveguide junctions. The gen-
eral form of the junctions, shown in Fig. 1, is a cylindrical
structure with an arbitrary cross section. It has N ports
whose surfaces are planes parallel to the axis of the structure,
and whose heights are equal to the height of the structure.
Inside the junction there may exist a finite number of layers
of lossless media with constant thicknesses and scalar
permittivities and permeabilities. The connecting wave-
guides must have axes perpendicular to the z axis, to make
the port surfaces constant-phase planes for the fields. Such a
junction generalizes the transversal discontinuities in rec-
tangular waveguides, curves, and ring-type hybrid junctions.

The fields inside the junction are expressed in terms of
Hertzian potentials which have only z directed components
and can be expanded as a series of the eigenfunctions of the
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structure. The coefficients in the expansions are determined
using the continuity of the tangential fields at the ports. The
field analysis is developed in such a manner that
the impedance and admittance matrices can easily be ob-
tained using field expressions. The general impedance or
admittance matrices are of infinite order and relate all
possible modes that may exist in the connecting waveguides.
A particular matrix relating only a finite number of modes—
usually the propagating modes—can be found from the
general matrix by assuming that the electrical ports corre-
sponding to the remaining modes are terminated by their
characteristic impedances and eliminating these modes bya
numerical procedure.

The eigenfunction expansion of the Hertzian potentials
has also been used as a starting point by Ridella and Bianco
(6], to analyze transmission-line discontinuities. However,
the applications are of limited number and only consider
single-mode-propagation cases. Using the eigenfunction
expansion method in waveguide-junction analysis results in
amethod which is applicable to a great number of cases at all
frequencies. Furthermore, the simplicity of the required
mathematics and programming techniques increases the
attractivencss of the method.

II. FIELD ANALYSIS
As mentioned in the preceding section, all the layers inside
the junction have different permittivities and permeabilities
and for each layer these parameters are scalar constants. The
relative permittivity function K(z) and the relative perme-
ability function M(z) can be given, in the form of piecewise
continuous functions, as

K@=t M) =p,

i i—1
d— Y d;<z<d- Y d (1)
j=1 j=1 :

where i =1, 2, -+, n, and n is the total number of layers.
Since the junction is source free, the fields satisfy the
following Maxwell’s equations:

V x H = joeyK(z)E (2a)

V x E = —jou,M(z)H (2b)

V- M(z)H =0 (2c)
V- -K@E=0. (2d)

Referring to Fig. 1, the junction can be thought of as a
piece of cylindrical waveguide of length d, directed along the
z axis. Making an analogy to the analysis of cylindrical
waveguides [3, ch. 5], the fields in the junction can be divided
into two classes. One class will have no H, component and
hence will be called planar magnetic (PM) fields. The other
class will have no E, component and will be called planar
electric (PE) fields. In this paper derivations for PM fields
are given, and for PE fields only the results are presented.

For PM fields, equation (2¢) can be expanded as

V-M(z)H=H VM(z)+ M(z)V-H=M(z)V-H=0.

Then, due to the definition of PM fields and the shape of the
structure, the fields can be derived from the electric Hertzian
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potential function

Ze =4, f(Z)Es(ul’u2) (3)
h _ _
such that 1 = joegV x A4,
E=(VxVx A4,)/K(z).

A procedure similar to the derivations for longitudinal-
section magnetic (LSM) modes of inhomogeneously filled
waveguides [3, ch. 6] gives the following equations govern-
ing f(z) and E(u,u,):

d[ 1 df(z)
dz|K(z) dz

i

]+W®M@%—MﬂWﬂﬂ=0W

VIE (uy,uz) + y*Efu,uy) =0 (5)
and the following field expressions:
H = —jowe, f(2)(@, x V,Eu,u,)) (6)
E = (@,7%f (2)E(u.u;)
+(df (2)/dz)V, E(u,u,)) K (z). (7)

As can be noticed, H,, is proportional to f(z) and E is
proportional to (df (z)/dz)/K(z), and the continuity of H,
and E, at the boundaries between the layers guarantees the
continuity of f (z) and (df (z)/dz)/K(z) for all values of z. Thus
together with the condition (df (z)/dz) = 0 at the top and
bottom boundaries, equation (4) becomes a Sturm-
Liouville system. Solutions to this type of differential equa-
tion have useful properties [7], but for an arbitrary
continuous function K(z) it is difficult to obtain closed-form
solutions. However, for K(z) given asin (1), equation (4) can
be reduced for each layer to the following form:

(@*fz:)/dz?) + ki fiz) = 0 (8)
where the z; are defined in Fig. 2 and the k,; are given by
) k% = %o oyt — 7. ©)
The general solution to such an equation is
flz:) = Cy; sin kz; + Cy; cos k2,

The coefficients C; and the eigenvalues k. can be
determined using the boundary conditions at the top and
bottom boundaries and the continuity of the tangential
fields at the boundaries between the layers. Straightforward
computations lead to a transcendental equation in'terms of
k.. For example, for a two-layer junction this equation has
the following form:

(kcl/arl) tan kcldl + (k62/8r2) tan kadZ = 0 (10)

Substituting for k,; from (9), the number of unknowns in the
transcendental equation reduces to one, namely y. Due to
nature of this equation, there are infinitely many solutions
for y. Each solution y,, (m =0, 1,2, -+, o0) defines a depth
eigenfunction f,,(z) which is the sum of f,,(z;) over all layers.
Since the f,,(z) are solutions of (4), they form an orthogonal
set of functions, with the orthogonality property defined as

j: (ful2) £1(2)/K(2)) dz = D, e
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Using the above results, equation (5) can be rewritten as
VZEg + V2Egm = 0.

On the portion of the lateral boundary occupied by the
ports, S,, the boundary conditions for (5) are inhomoge-
neous and are determined by the fields of incoming waves.
On the remaining portion of the lateral boundary, S,, the
boundary conditions imply that E, must vanish. On S,
either the tangential electric or tangential magnetic field
may be specified. If the tangential electric field is specified,
the corresponding fields inside the junction are called
short-circuit fields; when the tangential magnetic field is
specified, the corresponding fields are called open-circuit
fields. For a particular junction both open-circuit and
short-circuit fields are the same, but the former lead to
simpler derivations for the impedance matrix; the latter, for
the admittance matrix. The significance of this classification
will be clearer in the next section; however, the following
intuitive argument can be put forward: For computation of
an impedance matrix using network theory, it is general
practice to open-circuit all the ports, except one, and to find
the mutual impedances. Since a plane on which the tangen-
tial magnetic field vanishes is defined as an open-circuited
plane in microwave theory, specifying the tangential mag-
netic fields at the ports is better for computing the im-
pedance matrices.

Thus considering the open-circuit PM fields, the bound-
ary condition for E,,, on S, is determined by the incoming
magnetic field. Denoting this field as H,,, and using the
continuity of the tangential fields on S,,

OE

sm

1
on’ jweoD,y,

fd (ful2V/ K (2))(Hiw x 70 - &) dz.

0

4

Since the boundary condittons are inhomogeneous, E ., can
be found using the following expression [7]:

Esm(ulauz) = J Ge(ul’uZ; ull’u,Z)(aEsm/an) dL:)

Lo

Coordinate systems used for derivation of the z variation.

where the Green’s function G, is defined as

Ge(ulvuZ; u/17u’2) = Z (pn(ulvuZ)(Pn(ullaull)/(lr% - ’))31)
n=1

Defined in Table I, ¢, and A, are the planar eigenfunctions
and eigenvalues, respectively. Using (3), (6), and (7), 4,, E,
and H can be expressed in terms of the eigenfunctions and
the fields at the ports. The expressions for the fields and the
eigenfunctions of each class are summarized in Table I. Each
term in the series expansions of open-circuit PM and
open-circuit PE fields (short-circuit PM and short-circuit
PE fields) is defined as a mode, and these modes form a
complete set. Thus an arbitrary field inside the junction
excited by an arbitrary set of waveguide modes at the ports
can be expanded in terms of this set.

IIT. NETWORK ANALYSIS

To derive the impedance representation, first the port
voltages and the port currents are defined. Since all the
connecting waveguides are rectangular in shape, there are
two orthogonal sets of modes, namely TE and TM modes,
present in them. The transverse fields at port k can be
expanded in terms of these modes as follows [3, ch. 5]:

ET,k = z Vr,kér,l; (11)
gT,k = Z Ir,kh_r,k' (12)

The summations cover all TE and TM modes present in the
connecting waveguide. €,, and h,, are mode functions
related by

hr,k = ﬁ X ér,k

and normalized as

€ X
Sok

h_r,k : ﬁdSok = 1.

V,,and I, are the {/oltage and the current corresponding to .
mode r at port k. From (11) any port voltage can be obtained
by

Veok = (Ewlrik = (Erprid = J (Ezi " &) dS,(13)

Sok
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TABLE 1
EXPRESSIONS FOR THE EXPANSIONS OF THE FIELDS INSIDE THE JUNCTION
Py modes FE modes
1 - -
g ; ; nmfm(z) (3, %V, ¢ ) E - Zn: % NERONCIES AR
© 9 ar (z) B dg_(z)
o & 5, ¥2r (Y +—B v g — G vy
oK En: ; Jwe K(z) mn'® Yot T Tp ¥ g % Jo poh(z) %2 nfa(2)¥ 2 PP R
]
g _‘.i.[ ! dfm(Z)]+ (k24(2) - ¥2/%(z))E (2) = ol dgmm} G2 K(2) - n2/m(a))e. (2)
0 = —_ kS K(z) - -
ﬁ‘% dz |K(z) dz n m dz|v(z) dz ik Rz T/ 2) e,z
&
A A af (z)/dz=0 at z=0,4d gn(z) = 0 at z=0,d
Open circuit PM modes Short circuit PM modes Open circuit FE modes Short circuit FE modes
S V2, +xdy, = 2y, e A2, - Ry vy -0 2y vely, =0
g
4 & | 3Y /2n=0 on L Y =0 on L
g g:o n ° Y, =0 on Ly end L, o ¢ 3Wn/ dn = 0 on L, andl,
3% =0 on L, 3‘|’n/an=0 on L,
[
1 v eo “3%K0 1
g Apm = 2 2. Anm"—" > 7 Byam = 2. 2 o an= :
3 Dem(xn— Xm) em ‘ym(’\ Xm) Dhmrlm(dn 'r\m) (O( My )
©
& o\ Yy - - 3y . gm(z) - - .
:Q; S/O\Pn ) (BxH.8,)d8, | -5;’-‘— £.(2) (E; . 8,)ds, | gn(2) (H;, . 8,)as, S‘Pn o (hxE; .8,)ds,
- {3 (]
Note that using the total field E, or the tangential field E,, where
does not make any difference, since &, , is already tangential o ® g w2 f(2)
i am Vm |~ Jm\Z}Pn
to the port surface. Liygsj = Z ) -.w—;(az K@) es,j)‘
As it was mentioned before, the open-circuit field expres- m=1n=1 JD% J
sions will be used in the derivation of the impedance matrix. . Su@)en
From Table I, the total electric field (both PM and PE 4 K(z)" Crk .
modes) can be written as 1.2)
- a ~ Z)Pn _
B — A a 2 4 - a = > €
;; nm( z’))m fm( )(pn ](1)80 ¢4 K(Z) 8.7 )
+ @)V, 0,) jozo K () (dfm( CACT )
p ¥obrk
+ Bungul2) @ % V,0) (14) K@) .
Referring to (12), the total magnetic field of the incoming + D@z % V¥ gm(2),25.5);
waves, H;,, can be expressed a? (@, X Vo agml@)B (18)

N
in = Z Z 1 s, jh—s
ji=1 s
where the first summation is over the ports and the second is
over the TE and/or the TM modes. Then the coefficients 4,,,,
and B,,, become

A

nm

(85,58 ful2)pa/K(2));  (15)

”MZ

PR

Bnm = bnm ';1 z Is,j(és,jagm(z)(az X Vpl//m))j' (16)

a,,, and b, can be found by comparing the above expres-
sions with the ones in Table I. Substituting (14)-(16) into
(13), the voltage ¥, can be expressed as

N
I/r,k'—“ Z ZZrk,sts.j

j=1 s

(17)

is the mutual iinpedance between the rth mode at port k and
the sth mode at port j. Repeating the above procedure for
each port voltage, the results can be written in matrix form
as -

Vl le Z12 ZlN Il
€ Zan Zn v Zav | [L](19)
Vy Zyi Zna Zuw | | In

where Iy —=[I;,] and V, =[V,,] (i=1, 2, -++, o) are the

current and voltage vectors of port k, respectively.

At this stage, the idea behind the eigenfunction method
can be explained. In the preceding section, the fields inside
the junction were found in terms of the PM and PE modes
defined by the cigenfunctions. The amplitudes of the modes,
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denoted by A4,,, and B,,,, were determined by the ficlds at the
ports. In view of the expressions obtained for 4, and B, in
(15) and (16), the amplitudes of the junction modes can be
considered as the sum of the contributions from each port
current. Substitution of (14) into (13) shows that every port
voltage is the sum of the contributions from each junction
mode. Therefore, it can be concluded that the port voltages
can be written as a weighted sum of port currents. The
weighting factors are defined as the mutual impedances and
are given in (18). Thus without computing the amplitudes of
the junction modes, the port voltages and currents are
related with each other, to form an impedance
representation.

A similar derivation gives an admittance representation,

which is the dual of (19), where the entries are given by

- i i Coml@z % V@ fiul2)s.j);

m=1n=1

) (az X Vp(Pn fm(z)’ﬁr.k)k
2

D1 (az InlZ W

Y,

rkysj T

JORg

. (Mvp%,hnk)_

M(z)

The impedance matrix given in (19)is of infinite order and
in general covers all the TE and TM modes in the connecting
waveguides. In practice, there will be no need to consider all
the modes for a particular case, and the fields at the ports can
be approximated by the propagating modes plus a finite
number of evanescent modes. Then the impedance matrix
will be of finite order, but still some manipulations will have
to be made to eliminate the voltages and currents corre-
sponding to evanescent modes.

Although the junction has N physical ports, the number of
electrical ports is greater than N. In factitis equal to the sum
of all the modes that are used to approximate the fields at the
ports. In the electrical ports corresponding to evanescent
modes, these modes appear only as reflected waves, in other
words, as propagating in one direction. If the connecting
waveguides are sufficiently long, the clectrical ports corre-
sponding to the evanescent mode p at port g can be thought
of as terminated by a matched load or the wave impedance
Z, . Such a condition implies that the voltage and current of
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this mode can be eliminated from the impedance matrix, by
defining a new matrix whose entries are given by

Zi sl

rk.pq

’ — pg.sj
rk.sj — Zrk.sj —Z

20
+Z,, (20)

pq.pq

and deleting the row corresponding to V, , and the column
correspondingto I, ,from the new matrix [8]. Repeating this
for all evanescent modes, a particular matrix is obtained
relating only the propagating modes in the connecting
waveguides. The resulting matrix is approximate, and the
exact matrix can be obtained when the fields are approx-
imated by infinitely many modes. However, the above
procedure is a converging one, and quite accurate results can
be obtained by using a finite number of evanescent modes.

IV. AN ExaMPLE

To illustrate the application of the theory, the impedance
matrix for the asymmetrical inductive window, shown in
Fig. 3, is computed. The first layer of the junction is a perfect
conductor, and the second layer is air. It is assumed that the
frequency range is such that only an H,, mode can propa-
gate in the connecting waveguides. Since the junction has no
y variation, only H,, modes will be excited, for which the
mode functions are

2,1 =&, = d,\/2/bd sin (rnz/d)
h, 1= —h,,=a,/2/bd sin (rnz/d).

i

(21a)
(21b)

Since the fields at the ports have no E, components, only PE
modes are excited in the junction, and the corresponding
eigenfunctions and eigenvalues can be summarized as

gm(z) =/ 2/d, sin (mnz/d,) N = kg — (mn/d,)?
W,. = /2¢.,/ab cos (gmy/b) sin (nnx/a)

ak, = (nm/a)* + (qn/b)? (22)

where ¢,, is the Neumann factor and equals unity for n = 0,
and 2 otherwise. Substituting (21) and (22) into (18), the
entries of the impedance matrix are found as

Z1(rs) = Z,,(r,s) = —jouy(4d, /n*d) sin (rrd, /d) sin (snd, /d)

: i m? cot (a(k2 — (mm/d,)?)"'?)
m=1 (k(z) - (mn/d1)2)1/2(m2 — (Sdl/d)z)(mz — (le/d)z)'
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TABLE 11
VARIATION OF NETWORK PARAMETERS WITH NUMBER OF
APPROXIMATING MODES

a Iy Z1p
1 J 0.2420 J 1.1210
3 3 0.2176 3 1.1139
5 3 0.2040 J 1.1065
7 J 0.1976 J 1.1023
9 J 0.1963 J 1.1013
11 J 0.1962 J 1.1012
13 J 0.1959 J 1.1011
15 J 0.1951 J 1.1006
17 J 0.1943 J 1.1000
19 J 0.1940 3 1.0999
20 J 0.1940 J 1.0998
Dimensions:a=20 cm,d=2 em, dy =0.94
Prequency : 11 GHz

For Z,,(r,s) and Z,,(r.s), the cotangent will be replaced by
the cosecant in the above expression.

A computer program has been prepared to compute the
matrix entries and then to eliminate the evanescent modes
by using (20). The fields at the ports are approximated by the
fundamental mode and ¢ higher modes. Changing ¢,
the frequency, and the dimensions of the junction,
the parameters for a number of cases are calculated.

First, the convergence of the procedure used to eliminate
the evanescent modes is investigated. The results for a
particular set of dimensions with a different number of
approximating modes are given in Table IL. The conver-
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Fig. 4 T-network representation for inductive

window.

the asymmetrical

gence error is found to be less than 0.1 percent for this case,
and less than 1 percent in all other cases, with the maximum
value of g being 26. Also, the convergence error is around 0.5
percent for g = 11, which is acceptable for many applica-
tions. Thus to have a small computer-program size and
reasonable accuracy, it is sufficient to use about ten higher
modes to approximate the fields at the ports.

In the second step g is set equal to 9, and the network
parameters are calculated for various sets of dimensions and
frequency. The results, together with the ones obtained from
the formulas of Marcuvitz [2, sec. 8-9], are given in Table II1.
The conventional T-network representation of the junction
is shown in Fig, 4. All the impedance values are normalized
with respect to the wave impedance of the H ,, mode. The
variations of the parameters are similar in both cases and the
numeric values differ only with an error of less than 5
percent, except for a few cases. Since both the eigenfunction
method and the formulas of Marcuvitz are approximate,
these errors can be tolerated. For the cases with high
discrepancies in the numerical values, it is observed that the
results are affected to a great extent by the reading errors on
the graphs given by Marcuvitz.

TABLE III
VARIATION OF THE NETWORK PARAMETERS WITH FREQUENCY AND DIMENSIONS (d = 2 cm)
a = 20 cm & =2 cm
211 - 512 215 211 - 212 512
f dlld Numeric |Theoretic| Numeric |[Theoretic| Numeric |Theoretic| Numeric |Theoretic
0.2 j 0.0 Jj 0.001 J 0.0 j 0.0 3 0.0 J 0.001 J 0.0 J 0.0
0.5 J 0,055 | j 0.056 | j 0.0 3 0.0 J 0.055 | J 0.056 | § 0.0 3 0.0
8 ot 0,75 | J 0.281 | § 0.279 j 0.0 3 0.0 3 0.251 J 0.248 3 0.031 J 0,031
0.9 J 0,978 | 3 0.977 | J 0.0 J 0.0 J 0.489 | J 0.487 | J 0.653 | J 0.635
0.2 j 0,001 | j 0,00% 3 0.0 J 0.0 j 0.001 J 0.005 J 0.0 J 0.0
0.5 3 0.189 | J 0,201 J 0.0 3 0.0 J 0.186 J 0.197 3 0.003 J 0.003
11 Gl 0.75 | 3 0.25T ] § 0.253 | J 2.476 | J 3.549 | J 1.281 | J 1.355 |-J 1.378 |-§ 1l.344
0.9 |~-3 0.905 (-3 0.913 [ 3 1.101 | j 1.104 | J 8,730 | J 8.432 |-J 4,398 -] 4,220
0.2 j 0,002 | j 0,007 j 0.0 3 0.0 J 0,002 J 0.007 3 0.0 J 0.0
0.5 j 0.456 | J 0.455 | J 0.0 3 0.0 J 0,410 | j 0.408 | j 0.046 | 3 0,047
14 GHz 0.75 | 337.314 | 392,942 |-j18.590 [-j46,410 |- 2.429 |- 2,309 J 1.4T2 J 1.405
0.9 3 34.416 | j29.411 |-j17.202 [-314.701 [-j 1.039 |-F 1.062 | J 1.024 | J 1.034
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The best criteria for verifying the method are the exper-
imental results; the investigations are in progress. Never-
theless, it is apparent from the above discussion that quite
accurate results can be obtained by the eigenfunction
method employing a small number of evanescent modes.

V. CONCLUSION

Starting from eigenfunction expansion of the fields inside
the junction, a procedure to determine the impedance and
admittance representations of a certain class of rectangular
waveguides has been developed. The derivation of the
expressions for the matrix entries is straightforward once the
eigenfunctions of the junction are found. When the lateral
boundaries of the junction coincide with the constant
coordinate surfaces of a cylindrical coordinate system,
closed-form expressions can be obtained for the eigenfunc-
tions. However, for junctions with arbitrary cross sections,
numerical methods have to be used to obtain approximate
eigenfunctions. For many practical cases the eigenfunctions
are in the form of the trigonometric and/or the Bessel’s
function and can easily be used in appropriate expressions.

One of the features of the method is that it can be used at
any frequency. This is because matrices covering all the
modes in the connecting waveguides are found at the
beginning, and then at a given frequency the evanescent
modes are eliminated, giving a relation between the propa-
gating modes which may be of any number.
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Since it is required that all the ports must be on the lateral
boundary, devices such as the magic-T cannot be analyzed.
Also, for computations to be simple, the heights of the
connecting waveguides must be the same as the junction
height.
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High-Efficiency Millimeter-Wave Bolometer
Mount

TAKEMI INOUE, MEMBER, IEEE, AND TOSHIO NEMOTO, MEMBER, IEEE

Abstract—A  bolometer mount is described for measuring
TE, -mode waveguide power at a frequency of 100 GHz. This device
is called an eight-fan-type bolometer mount. By dividing the elect-
rode of the element into eight segments, the generation of an
unwanted mode was suppressed, and, by minimizing the electrode
area, heat loss due to the electrode was decreased.

As a result, good matching characteristics and high effective
efficiency were obtained. This mount is sufficiently useful for a
precision power measurement in the millimeter-wave region.

INTRODUCTION

BOLOMETER MOUNT is a standard device for
measuring power at both centimeter and millimeter
wavelengths. As the frequency increases in the millimeter-
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wave region, it becomes difficult to make a bolometer mount
with good performances.

An effective efficiency [1] is obtained on bolometer
mounts; effective efficiency is the ratio of the substituted bias
power to the net RF power input to the bolometer mount.
The effective efficiency generally degrades with increasing
frequency in the millimeter wavelengths. This is so mainly
because the millimeter-wave power dissipated in places
other than the detecting element increases in the mount,and
because the difference in the effectiveness of the millimeter-
wave and the bias power in the element increases, owing to
the expansion of the relative relation between the dimension
of the bolometer element and that of the wavelength.

For instance, there is a commercially available thermistor
mount having an efficiency of about 60 percent [2]. This
efficiency is much lower than that of a conventional bo-
lometer mount in the centimeter-wave region. A bolometer



