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Modeling Rectangular Waveguide Junctions
by the Eigenfunction Method

ALI H. NALBANDO~LU, STUDENT MEMBER, IEEE

Abstract—A method to determine the impedance and admittance

matrices of a certain class of rectangular waveguide junctions is

presented. First, general matrices are obtained relating all of the
modes that may exist in the waveguides connected to the ports, The

expressions for the matrix entries are given in terms of the eigenfunc-
tions of the volume occupied by the jnnction and the fields at the ports.
Second, to obtain a relationship between the propagating modes of
the connecting waveguides, a numerical iterative procedure is
developed to eliminate the evanescent modes from the general
matrices. Practical applications have shown that the results agree
well with the previous ones, aud the method can readily be used to

analyze different types of junctions in any required frequency range.
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NOMENCLATURE

Subscript for layers.

Relative permittivity of the ith layer.

Thickness of the ith layer.

Relative permittivity function of the junction.

Relative permeability function of the junction.

Outward normal unit vector.

The plane perpendicular to the z axis.

Subscript for the quantities pertinent to the P

plane.

Coordinate variables in the P plane,

Lateral surface occupied by the ports.

Lateral surface occupied by the kth port.

Lateral surface not occupied by the ports.

Intersection of the P plane and the lateral

surface. ,

Intersection of the P plane and SO.

Intersection of the P pkme and SOk.

Intersection of the P plane and SC.

Depth eigenfunctions (PM,PE).

Normalization constants for ~~(z) and g~(z).

Propagation constants in the P plane.

Planar eigenfunctions (PM,PE). -

Planar eigenvalues (PM,PE).

Total (magnetic, electric) fields in

ing waveguides.

I. INTRODUCTION

A WAVEGUIDE iunction can be defined

the connect-

as a closed

J5 box filled with a-heterogeneous combination of pas-

sive material media, connected to the rest of the circuit by

closed waveguides through a finite number of clearly

definable ports [1]. Early methods developed for their

analysis have generally utilized the analytic approach and
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Fig. 1. General form of the rectangular waveguide junctions.

have been aimed to obtain a formula from which numerical

values for a particular set of dimensions maybe obtained by

hand calculations. A good review of such methods and their

applications is given by Marcuvitz [2]. The resulting for-

mulas are all approximate, except for a small group of

junctions [3, ch. 10]. However, they served for a long time as

an almost unique tool to calculate network parameters,

although they need an advanced level of mathematics and

apply only to single-mode-propagation cases.

The use of the numerical approach is almost as old as the

analytic approach [4], but it became attractive only after the

advent of digital computers. Taking the review of Silvester

and Csendes [1] and the recent developments into account,

one can conclude that numerical methods are more success-

ful in analyzing the single or interacting planar discontinu-

ities. However, special care is required to avoid problems

such as relative convergence and inversion of ill-conditioned

matrices. Recently there have been studies to eliminate these

computational problems [5], however the mathematics

employed is quite complicated.

In this paper, a new method is described to model a

certain class of rectangular waveguide junctions. The gen-

eral form of the junctions, shown in Fig. 1, is a cylindrical ~

structure with an arbitrary cross section. It has N ports
whose surfaces are planes parallel to the axis of the structure,

and whose heights are equal to the height of the structure.

Inside the junction there may exist a finite number of layers

of lossless media with constant thicknesses and scalar

permittivities and permeabilities. The connecting wave-

guides must have axes perpendicular to the z axis, to make

the port surfaces constant-phase planes for the fields. Such a

junction generalizes the transversal discontinuities in rec-

tangular waveguides, curves, and ring-type hybrid junctions.

The fields inside the junction are expressed in terms of

Hertzian potentials which have only z directed components

and can be expanded as a series of the eigenfunctions of the
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structure. The coefficients in the expansions are determined

using the continuity of the tangential fields at the ports. The

field analysis is developed in such a manner that

the impedance and admittance matrices can easily be ob-

tained using field expressions. The general impedance or

admittance matrices are of infinite order and relate all

possible modes that may exist in the connecting waveguides.

A particular matrix relating only a finite number of modes—

usually the propagating modes—can be found from the

\ general matrix by assuming that the electrical ports corre-

sponding to the remaining modes are terminated by their

characteristic impedances and eliminating these modes by a

numerical procedure.

The eigenfunction expansion of the Hertzian potentials

has also been used as a starting point by Ridella and Bianco

[6], to analyze transmission-line discontinuities. However,

the applications are of limited number and only consider

single-mode-propagation cases. Using the eigenfunction

expansion method in waveguide-junction analysis results in

a method which is applicable to a great number of cases at all

frequencies. Furthermore, the simplicity of the required

mathematics and programming techniques incl~eases the

attractiveness of the method.

II. FIELD ANALYSIS

As mentioned in the preceding section, all the layers inside

the junction have different permittivities and perrneabilities

and for each layer these parameters are scalar constants. The
relative permittivity function K(z) and the relative perme-

ability function M(z) can be given, in the form of piecewise

continuous functions, as

K(z) = &ri ‘(z) = P-ri,

d–~dj<z<d–~~~dj (1)
j= 1

where i=l,2, ””., n, and n is the total number of layers.

Since the junction is source free, the fields satisfy the

following Maxwell’s equations:

V x ~ = joxoK(z)~ (2a)

V X E = –jcopOM(z)ll (2b)

v “ M(z)ll = o (2C)

V “ K(z)~ = O. (2d)

Referring to Fig. 1, the junction can be thought of as a

piece of cylindrical waveguide of length d, directe{d along the

z axis. Making an analogy to the analysis of cylindrical

waveguides [3, ch. 5], the fields in the junction can be divided

into two classes. One class will have no Hz component and

hence will be called planar magnetic (PM) fields. The other

class will have no E= component and will be called planar

electric (PE) fields. In this paper derivations for PM fields

are given, and for PE fields only the results are presented.

For PM fields, equation (2c) can be expanded as

v “ M(Z)13 = H “ Vi’kf(z) + M(z)v “ R = M(Z)T7 “ H = o.

Then, due to the definition of PM fields and the shape of the

structure, the fields can be derived from the electric Hertzian

potential function

1.= ii= f(z)E,(u1,u2)

such that
H=jco&OV x &

689

(3)

~ = (V x V x ~e)/K(z).

A procedure similar to the derivations for longitudinal-

section magnetic (LSM) modes of inhomogeneously filled

waveguides [3, ch. 6] gives the following equations govern-

ing~(z) and EJu1,uZ):

[1d ‘K) + (K(z)M(z)k~ – ~2)f(Z)/~(Z) = O (4)
~ K(z) dz

V;E@1,u2) + y2E@1,u2) = O (5)

and the following field expressions:

H = –.j@&o f(z)(% x VPE,(WNJ) (6)

E = (tiZY2f(Z)E.(U1 >U2)

+ (df(Z)/dZ)vp~,(~ l,~2))/K(Z). (7)

As can be noticed, HP is proportional to ~(z) and l?, is

proportional to (df(z)/dz)/K(z), and the continuity of HP

and EP at the boundaries between the layers guarantees the

continuity off(z) and (df(z)/dz)/K(z) for all values of z. Thus

together with the condition (df(z)/dz) = O at the top and

bottom boundaries, equation (4) becomes a Sturm-

Liouville system. Solutions to this type of differential equa-

tion have useful properties [7], but for an arbitrary

continuous function K(z) it is difficult to obtain closed-form

solutions. However, for K(z) given as in (1 ), equation (4) can

be reduced for each layer to the following form:

(d~(zi)/dzf) + k$i j(Zi) = O (8)

where the Zi are defined in Fig. 2 and the kci are given by

k~i = ~zeo~ogri~ri – ~2.

The general solution to such an equation is

fi(zi) = Cli sin kcizi + C2i cos kcizi.

The coefficients Cji and the eigenvalues kci

determined using the boundary conditions at the

(9)

can be

top and

bottom boundaries and the continuity of the tangential

fields at the boundaries between the layers. Straightforward

computations lead to a transcendental equation in’ terms of

kcti For example, for a two-layer junction this equation has

the following form:

(kcl/erl) tan kcldl + (kc2/er2) tan kc2d2 = O. (10)

Substituting for kci from (9), the number of unknowns in the

transcendental equation reduces to one, namely y. Due to

nature of this equation, there are infinitely many solutions

for y. Each solution y~ (m = O, 1,2,..., co) defines a depth

eigenfunction jJz) which is the sum of~~i(zi) over all layers.

Since the~~(z) are solutions of(4), they form an orthogonal

set of functions, with the orthogonality property defined as

j’ (fm(z)f.(z)/K(z))dz=D.mdm..
o
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Fig. 2. Coordinate systems used for derivation of the z variation.

Using the above results, equation (5) can be rewritten as

V:E~. + y:E~m = O.

On the portion of the lateral boundary occupied by the
ports, SO, the boundary conditions for (5) are inhomoge-

neous and are determined by the fields of incoming waves.

On t~e remaining portion of the lateral boundary, SC, the

boundary conditions imply that E,m must vanish. On SO

either the tangential electric or tangential magnetic field

may be specified. If the tangential electric field is specified,

the corresponding fields inside the junction are called

short-circuit fields; when the tangential magnetic field is

specified, the corresponding fields are called open-circuit

fields. For a particular junction both open-circuit and

short-circuit fields are the same, but the former lead to

simpler derivations for the impedance matrix; the latter, for

the admittance matrix. The significance of this classification

will be clearer in the next section; however, the following
intuitive argument can be put forward: For computation of

an impedance matrix using network theory, it is general

practice to open-circuit all the ports, except one, and to find

the mutual impedances. Since a plane on which the tangen-

tial magnetic field vanishes is defined as an open-circuited

plane in microwave theory, specifying the tangential mag-

netic fields at the ports is better for computing the im-

pedance matrices.

Thus considering the open-circuit PM fields, the bound-

ary cmdition for Esm on SOis determined by the incoming
magnetic field. Denoting this field as Hi., and using the

continuity of the tangential fields on SO,

Since the boundary conditions are inhomogeneous, E~m can

be found using the following expression [7]:

E,m(u1,u2) = ~ Ge(u 1,u2; u~,u\)(~EJh) dCO
L.

where the Green’s function G, is defined as

Ge(%~2~ 4A)=’ ~g 9n(~19~2)~n(~i?u2)/(~: - l%).

Defined in Table I, q. and ~. are the planar eigenfunctions

and eigenvalues, respectively. Using (3), (6), and (7), X., E,

and 17 can be expressed in terms of the eigenfunctions and

the fields at the ports. The expressions for the fields and the

eigenfunctions of each class are summarized in Table I. Each

term in the series expansions of open-circuit PM and

open-circuit PE fields (short-circuit PM and short-circuit

PE fields) is defined as a mode, and these modes form a

complete set. Thus an arbitrary field inside the junction

excited by an arbitrary set of waveguide modes at the ports

can be expanded in terms of this set.

III. NETWORK ANALYSIS

To derive the impedance representation, first the port

voltages and the port currents are defined. Since all the

connecting waveguides are rectangular in shape, there are

two orthogonal sets of modes, namely TE and TM modes,

present in them. The transverse fields at port k can be

expanded in terms of these modes as follows [3, ch. 5]:

ET,k = ~ Vr,kq.k (11)
r

H=,k = ~ I,,~h,,ti (12)
r

The summations cover all TE and TM modes present in the

connecting waveguide. ~,,k and ~,,~ are mode funCtiOns
related by

%.,k= ii x c,,~

and normalized as

J
c,,~ X &,,k “ ii dSO~ = 1.

Sok

~,~ and 1,,~ are the voltage and the current corresponding to

mode rat port k. From(11 ) any port voltage can be obtained

by

V,,~ = (~@,.k)~ = (~=,~,~,,~ ~ –) – ~~ , @T,k “ ~r,~) dSok.(13)
.
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TABLE I
EXPRESSIONS FOR THE EXPANSIONS OF THE FIELDS INSIDE THE JUNCTION

P&: modes

~ = ~ ~ Am fm(z)(&zxVp~n)

E=i; ,J&
!wm(z)

(?4=Y:fm(z) Vn+. — Vpyn)
nm dz

4=+3’‘k’”(z)- ‘:’K(z))’m(z)‘0
dfm(z)/dz=O at z=O, d

Open circuit PM modes

2Wnlan=o on Lo

Vn=” on L
c

Am .
1

Dem( ~:-@”

J fro(z)
Vn — (iix~in. iiz)dS(

so K(z)

Short circuit PM modes

Yn. o on Lo and Lc

Ja’+’n
fro(z) ( =in . 5z)dSo

~=
o

Note that using the total field E~ or the tangential field ET,

does not make any difference, since Z,,k is already tangential

to the port surface.

As it was mentioned before, the open-circuit field expres-

sions will be used in the derivation of the impedance matrix.

From Table I, the total electric field (both PM and PE

modes) can be written as

E,= ~ ~ – Anm(iizy; fm(z)q”
mn

+ (dfm(z)/dz)Vpqn)/j~Eo K(z)

+ Bnmgm(z)(iiz x Vpljn). (14)

Referring to (12), the total magnetic field of the incoming

waves, Hin, can be expressed as

Hi. = ~ ~ I~,jfi~j
j=l ~

where the first summation is over the ports and the second is

over the TE and/or the TM modes. Then the coefficients A~~

and Bnm become

A~~ = -u,~~ ~ ~ l~,j(a~,j,~z f~(z)@n/K(z))j (15)
j=l s

B~m = b~m f ~ I~,j(Z~,j,gm(z)(tiz X Vp~lm))l (16)
j=l ~

“~ and bflm can be found by comparing thea

sions with the ones in Table I. Substituting

(13), the voltage ~,, can be expressed as

above expres-

(14)-(16) into

(17)

+++-]+,,’(z) -,,fi:,z))gm(z) .0

gin(z) = o atz=O, d I

Open circuit FE modes Short circuit FE modes I

2~n/ 13n = O on Lo andLc

B 1
nm =

.

%m (A: -y:)

[

~ gin(z)
— ( fix fiin, ?iz)dSo

so n X(z)

where

is the mutual impedance between the rth mode at port k and

the sth mode at port j. Repeating the above procedure for

each port voltage, the results can be written in matrix form
.,

(19)

where zk = [Zi,~ and ~~ = [~t,J (~ = 1, 2, *”., m) are the
current and voltage vectors of port k, respectively.

At this stage, the idea behind the eigenfunction method

can be explained. In the preceding section, the fields inside

the junction were found in terms of the PM and PE modes

defined by the eigenfunctions. The amplitudes of the modes,
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denoted by A.~ and B.~ were determined by the fields at the

ports. In view of the expressions obtained for A.~ and B.~ in

(15) and (16), the amplitudes of the junction modes can be

considered as the sum of the contributions from each port

current. Substitution of (14) into (13) shows that every port

voltage is the sum of the contributions from each junction

mode. Therefore, it can be concluded that the port voltages

can be written as a weighted sum of port currents. The

weighting factors are defined as the mutual impedances and

are given in (18). Thus without computing the amplitudes of

the junction modes, the port voltages and currents are

related with each other, to form an impedance

representation.

A similar derivation gives an admittance representation,

which is the dual of (19), where the entries are given by

“(~9m(z)tin,E, ~)z M(z) ‘ ~

( !h(z)tn, h
+ ~d=ii,—

JOJpo iM(Z) “j j

“i )4L?I(ZWV,+m,gr,k .

M(z) k

The impedance matrix given in (19) is of infinite order and

in general covers all the TE and TM modes in the connecting

waveguides. In practice, there will be no need to consider all

the modes for a particular case, and the fields at the ports can

be approximated by the propagating modes plus a finite

number of evanescent modes. Then the impedance matrix

will be of finite order, but still some manipulations will have

to be made to eliminate the voltages and currents corre-

sponding to evanescent modes.

Although the junction has N physical ports, the number of

electrical ports is greater than N. In fact it is equal to the sum

of all the modes that are used to approximate the fields at the

ports. In the electrical ports corresponding to evanescent

modes, these modes appear only as reflected waves, in other
words, as propagating in one direction. If the connecting

waveguides are sufficiently long, the electrical ports corre-

sponding to the evanescent mode p at port q can be thought

of as terminated by a matched load or the wave impedance

ZP,~. Such a condition implies that the voltage and current of

lzzzr-~ d

port 1 I I port 2

E

d,

~ -x -+Y

Fig. 3. Side and front views of thick asymmetrical inductive window.

this mode can be eliminated from the impedance matrix, by

defining a new matrix whose entries are given by

z Zpq,,j
‘rk,sj = ‘rk,sj – .~—

~q,pq + Zp,q
(20)

and deleting the row corresponding to VP,~and the column

corresponding to Ip,q from the new matrix [8]. Repeating this

for all evanescent modes, a particular matrix is obtained

relating only the propagating modes in the connecting

waveguides. The resulting matrix is approximate, and the

exact matrix can be obtained when the fields are approx-

imated by infinitely many modes. However, the above

procedure is a converging one, and quite accurate results can

be obtained by using a finite number of evanescent modes.

IV. AN EXAMPLE

To illustrate the application of the theory, the impedance

matrix for the asymmetrical inductive window, shown in

Fig. 3, is computed. The first layer of the junction is a perfect

conductor, and the second layer is air. It is assumed that the

frequency range is such that only an H lo mode can propa-

gate in the connecting waveguides. Since the junction has no

y variation, only H.O modes will be excited, for which the

mode functions are

z,,, = 2,,2= iiy~~ sin (rrcz/d) (21a)

E.,l = – hp,z = az~2/bd sin (rnz/d). (21b)

Since the fields at the ports have no EZ components, only PE

modes are excited in the junction, and the corresponding

eigenfunctions and eigenvalues can be summarized as

g.(z) = & sin (nmz/d,) II: = k: – (rnn/dl )2

ti,. = ~2a,/ab cos (rury/b) sin (nzx)a)

a~n= (nn/a)2 + (qrc/b)2 (22)

where 804is the Neumann factor and equals unity for n = O,

and 2 otherwise. Substituting (21) and (22) into (18), the

entries of the impedance matrix are found as

21 ,(v,s) = Z22(r,.s) = –jcopO(4d1 /z’d) sin (iwdl /d) sin (sndl /d)

m2 cot (a(k~ – (mrc/d1)2)1’2)

“ ~E1 (k: - (mn/d1)2)1’2(m2 - (sdl/d)2)(m2 - (rdl/d)2)”
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TABLE II

VARIATION OF NETWORK PARAMETERS WITH NUMBER OF

APPROXIMATING MODES
—

q I& Z12
—

1 j 0.2420 j 1*121O

3 j 0.2176 j 1.1139

5 j 0.2040 j 1.1065

7 j 0.1976 j 1.1023

9 j 0.1963 j 1.1013

11 j 0.1962 j 1.1012

13 j 0.1959 j 1.1011

15 j 0.1951 j 1.1006

17 j 0.1943 j 1.1000

19 j 0.1940 j 1.0999

20 j 0.1940 j 1.0998
—

❑ensions : az20 cm, dz2 cm, dl=o.9d

equency t 11 GHz

—

For Z12(r,s) and Zzl(r,s), the cotangent will be replaced by

the cosecant in the above expression.

A computer program has been prepared to compute the

matrix entries and then to eliminate the evanescent modes

by using (20). The fields at the ports are approximated by the

fundamental mode and q higher modes. changing q,

the frequency, and the dimensions of the junction,

the parameters for a number of cases are calculated.

First, the convergence of the procedure used to eliminate

the evanescent modes is investigated. The results for a

particular set of dimensions with a different number of

approximating modes are given in Table II. The conver-

711-212 2 -?22 12
I h

1+ 1

I
I I

a P
)T, 12

Fig. 4. T-network representation for the asymmetrical inductive
window.

gence error is found to be less than 0.1 percent for this case,

and less than 1 percent in all other cases, with the maximum

value of q being 2@.Also, the convergence error is around 0.5

percent for q = 11, which is acceptable for many applica-

tions. Thus to have a small computer-program size and

reasonable accuracy, it is sufficient to use about ten higher

modes to approximate the fields at the ports.

In the second step q is set equal to 9, and the network

parameters are calculated for various sets of dimensions and

frequency. The results, together with the ones obtained from

the formulas of Marcuvitz [2, sec. 8-9], are given in Table III.

The conventional T-network representation of the junction

is shown in Fig. 4. All the impedance values are normalized

with respect to the wave impedance of the H ~~ mode. The

variations of the parameters are similar in both cases and the

numeric values differ only with an error of less than 5

percent, except for a few cases, Since both the eigenfunction

method and the formulas of Marcuvitz are approximate,

these errors can be tolerated. For the cases with high

discrepancies in the numerical values, it is observed that the

results are affected to a great extent by the reading errors on

the graphs given by Marcuvitz.

TABLE 111
VARIATION OF THE NETWORK PARAMETERS WITH FREQUBNCY AND DIMENSIONS (d= 2 cm)

f dl/d Numeric

0.2 j 0.0

0.5 j 0.055
8 GHz

0.75 j 0.281

0.9 j 0.978

0.2 j 0.001

0.5 j 0.189
11 GHz

0.75 j 0.25’7

0.9 -j 0.905

0.2 j 0.002

0.5 j 0.456

14 GHz 0.75 j37.314

0.9 j 34.416

heoretic

—-

j 0.001.

j 0.056

j 0.279

j 0.977
—-
j 0.005

j O. 203L

j 0.253

j 0.91:1
—.
j 0.007

j 0.455

j92.942

j 29.41:1

IWaeric

j 0.0

j 0.0

j 0.0

j 0.0

j 0.0

j 0.0

j 2.476

j 1.101

Il!heoretfc Numeric

j 0.0

j 0.0

j 0.0

j 0.055

-F
j0.0 j 0.251

j 0.0 j 0.489

j 0.0 j 0.001

j 0,0 j 0.186

3 3.549 j 1.281

j 1.104 I j 8.730

j 0.0 j 0.0

j 0.0 j 0.0

-j18.590 -j46.410

-j17.202 -j14.7ol

j 0.002

j 0.410

-j 2.429

-j 1.039

T
heoretic Numeric

j 0.001 j 0.0

j 0.056 j 0.0

j 0.248 j 0.031

j 0.487 j 0.653

*

j 0.005 j 0.0

j 0.197 j 0.003

j 1.355 -j 1.378

j 8.432 -j 4.398

j 0.007 j 0.0

j 0.408 j 0.046

j 2.309 j 1.471

j 1.062 j 1.024

7
?heoretic

j 0.0

j 0.0

j 0.031

j 0.635

j 0.0

j 0.003

-j 1.344

-j 4.220

J
j0.0

j 0.047

j 1.405

j 1.034
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The best criteria for verifying the method are the exper-

imental results; the investigations are in progress. Never-

theless, it is apparent from the above discussion that quite

accurate results can be obtained by the eigenfunction

method employing a small number of evanescent modes.

V. CONCLUSION

Starting from eigenfunction expansion of the fields inside

the junction, a procedure to determine the impedance and

admittance representations of a certain class of rectangular

waveguides has been developed. The derivation of the

expressions for the matrix entries is straightforward once the

eigenfunctions of the junction are found. When the lateral

boundaries of the junction coincide with the constant

coordinate surfaces of a cylindrical coordinate system,

closed-form expressions can be obtained for the eigenfunc-

ticms. However, for junctions with arbitrary cross sections,

numerical methods have to be used to obtain approximate

eigenfunctions. For many practical cases the eigenfunctions

are in the form of the trigonometric and/or the Bessel’s

function and can easily be used in appropriate expressions.

One of the features of the method is that it can be used at

any frequency. This is because matrices covering all the

modes in the connecting waveguides are found at the

beginning, and then at a given frequency the evanescent

modes are eliminated, giving a relation between the propa-

gating modes which may be of any number.

Since it is required that all the ports must be on the lateral

boundary, devices such as the magic-T cannot be analyzed.

Also, for computations to be simple, the heights of the

connecting waveguides must be the same as the junction

height.
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High-Efficiency Millimeter-Wave Bolometer
Mount

TAKEMI INOUE, MEMBER, IEEE, AND TOSHIO NEMOTO, MEMBER, IEEE

Abstrac6—-A bolometer mount is described for measuring
TEO ~-mode waveguide power at a frequency of 100 GHz. This device

is called an eight-fan-type bolometer mount. By dividing the elect-
rode of the element into eight segments, the generation of an
unwanted mode was suppressed, and, by minimizing the electrode
area, heat loss due to the electrode was decreased.

As a result, good matching characteristics and high effective
efficiency were obtained. This mount is sufficiently useful for a
precision power measurement in the millimeter-wave region.

INTRODUCTION

A BOLOMETER MOUNT is a standard device for

measuring power at both centimeter and millimeter

wavelengths. As the frequency increases in the millimeter-
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Tanashi, Tokyo, Japan.

wave region, it becomes difficult to make a bolometer mount

with good performances.

An effective efficiency [1] is obtained on bolometer

mounts; effective efficiency is the ratio of the substituted bias

power to the net RF power input to the bolometer mount.
The effective efficiency generally degrades with increasing
frequency in the millimeter wavelengths. This is so mainly

because the millimeter-wave power dissipated in places

other than the detecting element increases in the mount,,and

because the difference in the effectiveness of the millimeter-

wave and the bias power in the element increases, owing to

the expansion of the relative relation between the dimension

of the bolometer element and that of the wavelength.

For instance, there is a commercially available thermistor

mount having an efficiency of about 60 percent [2]. This
efficiency is much lower than that of a conventional bo-

lometer mount in the centimeter-wave region. A bolometer


